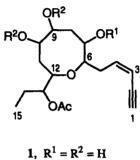
Doliculols A and B, the Non-halogenated C₁₅ Acetogenins with Cyclic Ether from the Sea Hare Dolabella auricularia

Makoto Ojika,* Takayuki Nemoto, and Kiyoyuki Yamada*

Department of Chemistry, Faculty of Science, Nagoya University, Chikusa, Nagoya 464, Japan

Abstract: Doliculois A (1) and B (2), the first non-halogenated C_{15} acetogenins with cyclic ether, were isolated from the sea hare Dolabella auricularia. The gross structures of these compounds were elucidated by using spectroscopic and chemical methods.


There have been isolated a number of C_{15} acetogenins containing cyclic haloether(s) with a terminal enyne or allene moiety from red algae of the genus *Laurencia* as well as the sea hares that feed on them.¹ In the course of our study on novel metabolites of the sea hare *Dolabella auricularia*, we have found new C_{15} acetogenins, doliculols A (1) and B (2), which were the first non-halogenated cyclic ethers of this class.² In this communication we describe the isolation and structural elucidation of these compounds.

The sea hare *D. auricularia* was collected on the Pacific coast of Mie Prefecture, Japan. The EtOAcsoluble material from the methanolic extract was partitioned between hexane and 90% MeOH. The 90% MeOH portion was subjected to repeated normal-phase chromatography followed by reversed-phase HPLC to afford doliculol A (1, 4.7 x $10^{-5\%}$ wet wt) and doliculol B (2, 4.4 x $10^{-5\%}$)³ as colorless oils.

Doliculol A (1), $[\alpha]^{26}_{D}$ +37° (c 0.78, CHCl₃), has a molecular formula C₁₇H₂₆O₆ [high-resolution EIMS: *m/z* 326.1753 (M⁺), Δ +2.4 mmu]. ¹H and ¹³C NMR signals were assigned as shown in Table 1 by a ¹H-¹³C COSY experiment. The IR absorption bands at 3570, 3400, 2090, and 1730 cm⁻¹ (CHCl₃) indicated the presence of hydroxyl, acetylene, and ester functionalities. The presence of a conjugated *cis* enyne unit was proved by the UV absorption band at 223 nm (ε 10,700) (MeOH) and the comparison of the NMR data between 1 and the related enyne compound, laureatin.⁴ All the carbon connectivities were determined by a

COSY experiment and the characterization of six oxymethines was accomplished by the comparison of ¹H NMR data between 1 and the acetate 3⁵ obtained by acetylation (Ac₂O, pyr) of 1. Thus, the positions of three hydroxyl groups in 1 were determined by acetylation shifts at H-7 (δ 3.69 \rightarrow 4.79), H-9 (δ 4.31 \rightarrow 5.62), and H-10 (δ 3.62 \rightarrow 5.14) in 3. Since the relatively low-field chemical shift (δ 4.89) due to H-13 in 1 indicated that the acetoxyl group was located on C-13, the remaining two oxymethine carbons (C-6 and C-12) in 1 were linked through an oxygen atom to form an eight-membered cyclic ether. These findings suggested that the gross structure of doliculol A is shown in the formula 1.

Doliculol B (2),⁵ $[\alpha]^{25}_{D}$ + 40° (c 0.90, CHCl₃), was presumed to be a monoacetate of 1 from the molecular formula C₁₉H₂₈O₇ [high-

2, $R^1 = Ac$, $R^2 = H$ 3, $R^1 = R^2 = Ac$

Position	1		2		3	
	1 _H	13 _C	1 _H	13 _C	1 _H	
1	3.52 d (2.3)	84.1 d	3.56 d (2.3)	84.1 d	3.21 d (1.7)	
2	-	81.1 s		80.9 s	-	
3	5.55 ddd (10.8, 2.3, 1.2)	111.6 d	5.54 ddd (10.9, 2.3, 2.0)		5.57 ddd (11.0, 1.7, 1.3)	
4	6.03 ddd (10.8, 7.8, 7.8)	142.2 d	5.91 ddd (10.9, 8.9, 6.4)		5.88 ddd (11.0, 9.0, 7.6)	
	2.67 ddd (14.8, 8.4, 7.8)	35.4 t	2.68 ddd (14.2, 9.2, 8.9)		2.75 ddd (13.9, 9.0, 9.0)	
	2.59 dddd		2.38 dddd		2.49 dddd	
	(14.8, 7.8, 6.1, 1.2)		(14.2, 6.4, 5.6, 2.0)		(13.9, 7.6, 5.4, 1.3)	
6	3.83 dd (8.4, 6.1)	74.5 d	4.05 dd (9.2, 5.6)	73.2 d	3.92 dd (9.0, 5.4)	
7	3.69 dd (2.4, 2.4)	69.9 d	4.81 dd (3.3, 3.0)	73.0 d	4.79 br d (5.3)	
8	1.81–1.85 m	41.9 t	1.87–1.92 m	38.4 t	2.15 dd (16.2, 5.3)	
					1.79 ddd (16.2, 9.2, 2.0)	
9	4.31 ddd (8.8, 6.6, 2.7)	70.2 d	4.26 ddd (8.6, 6.6, 2.6)	70.4 d	5.62 dd (9.2, 9.2)	
10	3.62 ddd (8.8, 4.2, 2.7)	75.6 d	3.62 ddd (8.6, 4.0, 2.6)	75.3 d	5.14 ddd (9.2, 4.3, 2.3)	
11	2.05 ddd (16.1, 9.0, 2.7)	30.6 t	2.14 ddd (15.8, 9.3, 2.6)	30.4 d	2.04 m	
	1.72 ddd (16.1, 4.2, 1.8)		1.75 ddd (15.8, 4.0, 1.7)		1.95 m	
12	4.07 ddd (9.0, 7.4, 1.8)	73.2 d	4.12 ddd (9.3, 6.8, 1.7)	73.4 d	4.04 ddd (11.9, 7.7, 2.3)	
13	4.89 ddd (7.4, 7.4, 4.1)	77.5 d	4.91 ddd (7.3, 6.8, 4.6)	77.7 d	4.93 ddd (7.7, 7.7, 4.0)	
14	1.88 ddg (14.8, 4.1, 7.4)	26.1 t	1.83 ddg (14.6, 4.6, 7.3)	26.2 t	1.84 ddg (15.2, 4.0, 7.6)	
	1.59 ddg (14.8, 7.4, 7.4)		1.60 ddg (14.6, 7.3, 7.3)		1.60 ddq (15.2, 7.7, 7.6)	
15	0.92 t (7.4)	10.0 g	0.92 t (7.3)	10.0 q	0.90 t (7.6)	
Ac	2.07 s	21.1 g	2.11, 2.08 s	21.1, 21.3 q	2.21, 2.07, 2.05, 1.96 s	
	-	172.6 s		172.3, 172.5 s		

Table 1. NMR Spectral Data of 1-3.

Spectra were recorded at 270 MHz for ¹H and at 67.8 MHz for ¹³C using CD₃OD (for 1 and 2) and CDCl₃ (for 3) as solvents and TMS as internal standard. Chemical shifts are in δ values. Coupling constants in Hz are in parenthesis.

resolution EIMS, m/z 368.1810 (M⁺), Δ -2.5 mmu] and the fact that acetylation of 2 afforded 3. The detailed comparison of ¹H NMR spectra (Table 1) between 1 and 2 revealed that 2 was 7-O-acetyl derivative of 1.

One of the structural features of various C_{15} acetogenins of marine origin is that they contain halogen(s), la,b and the biosynthetic role played by the halogen for the cyclic ether formation has been disclosed recently.^{1c} To our knowledge doliculols A and B are the first non-halogenated C₁₅ acetogenins with cyclic ether, and thus their isolation is significant from the biosynthetic viewpoint of these structurally interesting compounds.

REFERENCES AND NOTES

- (a) Moore, R. E. Algal Nonisoprenoids. In Marine Natural Products, Scheuer, P. J. Ed.; Academic 1. Press, New York, 1978, Vol. 1, Ch. 2, pp 43–124; (b) Erickson, K. L. Constituents of *Laurencia*. In *Marine Natural Products*, Scheuer, P. J. Ed.; Academic Press, New York, 1983, Vol. 5, Ch. 4, pp 131– 257; (c) Fukuzawa, A.; Takasugi, Y.; Murai, A.; Nakamura, M.; Tamura, M. Tetrahedron Lett. 1992, 33, 2017.
- 2. Dehydrobromolaurefucin, although this compound does not contain halogens, is regarded as a derivative of the bromine-containing C15 enyne laurefucin: Wratten, S. J.; Faulkner, D. J. J. Org. Chem. 1977, 42, 3343.
- Conditions for chromatographic separation: 1, 1) silica gel, EtOAc/MeOH, step gradient, 2) silica gel, hexane/acetone, step gradient, 3) silica gel, CHCl₃/MeOH, linear gradient, 4) silica gel, hexane/EtOAc/MeOH 46:46:8, 5) silica gel C₆H₆/MeCN 1:1, 6) HPLC, ODS, 45% MeOH; 2, 1) and 2) same as the 3. conditions 1) and 2) for 1, 3) alumina, EtOAc/MeOH, step gradient, 4) HPLC, ODS, 55% MeOH. Irie, T.; Izawa, M.; Kurosawa, E. Tetrahedron 1970, 26, 851.
- 4.
- 2: UV (MeOH) λmax 223 nm (ε 11800); IR (CHCl₃) 3580, 3430, 3300, 2090, 1730, 1240 cm⁻¹. 3: 5. colorless needles, mp 154–155 °C (hexane-EtOAc); $[\alpha]^{26}$ +58° (c 0.13, CHCl₃); UV (MeOH) λ max 223 nm (ϵ 9300); IR (CHCl₃) 3300, 3050, 1730, 1240 cm⁻¹; HRMS *m*/z 452,2015 (Δ -3.2 mmu).